Does the microbiome and virome contribute to myalgic encephalomyelitis/chronic fatigue syndrome?

Clinical science (London, England : 1979). 2018;132(5):523-542

Plain language summary

Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease. Several studies have shown alterations in the gut microbiome (dysbiosis) in patients with ME/CFS. However, in focusing on the bacterial components of the microbiome, the viral component of the microbiome (known as the virome) has been neglected. Viruses can change the microbiome which can influence the health. This area is therefore important for research into ME/CFS. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the challenges associated with microbiome studies are discussed. A literature search was done and 11 papers were found that had examined the microbiome ME/CFS patients, dating from 1998 to 2017. It was not possible to compare the studies statistically but from looking at each one individually there is sufficient evidence to support the claim of an altered intestinal microbiome in ME/CFS patients. ME/CFS is multifactorial and potential dysbiosis should be considered to be only part of the picture. Future studies are needed to adopt standardized techniques and analyses. As research increases, it is becoming clear that the virome can directly and indirectly affect host health, and may play a role in the pathogenesis of ME/CFS.

Abstract

Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed.

Lifestyle medicine

Patient Centred Factors : Mediators/Dysbiosis
Environmental Inputs : Microorganisms
Personal Lifestyle Factors : Nutrition ; Environment
Functional Laboratory Testing : Stool
Bioactive Substances : Gut microbiome ; Virome

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Metabolome ; Dysbiosis